

Synthesis of New Compounds Based on (Z)-HFC-1225ye and the use of Bu₃Sn(CF=CF(CF₃)) as a Perfluoropropenyl Transfer Reagent. Anthony Thomas, Alan K. Brisdon*, Robin G. Pritchard

Z-perfluoropropenyl lithium (CF₃CF=CFLi) can be synthesised by reacting (Z)-HFC-1225ye (CF₃CF=CFH) with one equivalent of ⁿBuLi. The resulting perfluoropropenyl lithium can then be reacted *in situ* with a number of electrophiles as per the scheme below:

Using a Stille-Liebeskind cross-coupling reaction $Bu_3Sn(CF=CF(CF_3))$ has been successfully used as a reliable source of the perfluoropropenyl group with $Pd(PPh_3)_4$ as the catalyst. Copper iodide was added as a co-catalyst due to its ability to increase the rate of reaction². Thus $Bu_3Sn(CF=CF(CF_3))$ reacts with an aryl iodide or benzyl bromide in the presence of the catalyst and co-catalyst at room temperature yielding the expected phenylperfluoropropenes and

Reactions with Ph_3SnCl , Ph_2SnCl_2 , $PhSnCl_3$ and $SnCl_4$ resulted in the expected products in good yield. ¹⁹F {¹H} NMR spectra of the CF₃ signal shows coupling to the two other fluorines (see below left) and, on increasing substitution, through-space coupling to a fluorine on the neighbouring CF=CF(CF₃) group(s), resulting in additional doublet, triplet and quartet patterns.

¹¹⁹Sn{¹H} NMR spectrum of Ph₃Sn(CF=CF(CF₃)) showed a ddq splitting pattern as expected δ_{Sn} -148.9 (ddq J_{SnF} 211.4, 7.62, 2.50 Hz)

Similarly Z-perfluoropropenyl lithium was reacted with Bu₃SnCl₂Bu₂SnCl₂Ph₃GeBr and Ph₃PbCl af-

phenylpentafluorobutene.

As outlined below reactions using PhI, p-NO₂C₆H₄I, p-MeOC₆H₄I, $(IC_6H_4OCH_2)_2$ and $C_6H_5CH_2Br$ yielded the subsequent arylperfluoropropenes PhCF=CF(CF₃), p-NO₂C₆H₄CF=CF(CF₃), p-MeOC₆H₄CF=CF(CF₃), $((CF_3)CF=CFC_6H_4OCH_2)_2$ and phenylpentafluorobutene PhCH₂CF=CF(CF₃) in good yields.

All were confirmed by ¹⁹F NMR spectroscopy and by comparison to previously reported values where possible³, with the p-NO₂ subsituted and bis-subsituted phenyl ether systems also being characterised using MS.

fording $Bu_3Sn(CF=CF(CF_3))$, $Bu_2Sn(CF=CF(CF_3))_2$, $Ph_3Ge(CF=CF(CF_3))$ and $Ph_3Pb(CF=CF(CF_3))$ respectively in good yields. Of these $Bu_3Sn(CF=CF(CF_3))$ has been reported previously by Burton *et al.* using a different method¹.

Z-perfluoropropenyl lithium was also reacted with PhHgCl and HgCl₂ producing PhHg(CF=CF(CF₃)) and Hg(CF=CF(CF₃))₂ respectively in good yields.

 $Ph_3Sn(CF=CF(CF_3))$ was tested as an alternative to $Bu_3Sn(CF=CF(CF_3))$ as a source of the perfluoropropenyl group. The reaction did proceed but with a much lower conversion rate; 10% for $Ph_3Sn(CF=CF(CF_3))$ opposed to >95% for $Bu_3Sn(CF=CF(CF_3))$.

¹⁹F NMR spectra of (Z)-HFC-1225ye, $Bu_3Sn(CF=CF(CF_3))$ and $Ph(CF=CF(CF_3))$

The cross-coupling reaction progression can be tracked by the use of ¹⁹F NMR spectroscopy due to the large changes in chemical shift between starting materials and desired products

¹⁹⁹Hg {¹H} NMR spectrum of Hg(CF=CF(CF₃))₂ showed a ttsept splitting pattern as expected. δ_{Hg} -1145.7 (ttsept J_{HgF} 864.1, 275.9, 17.8 Hz) PPM -65.66 -65.70 -65.74 -65.78 -65.82 PPM -118.42 -118.46 -118.50 -118.54 PPM -157.68 -157.72 -157.76 -157.8

¹⁹F{¹H} NMR Spectra of PhCH₂CF=CF(CF₃). δ_{F} -65.7 (dd J_{FF} 12.1, 8.8 Hz -CF=CF(CF₃)), -118.5 (qd J_{FF} 8.8, 4.8 Hz -CF=CF(CF₃)), -157.7 (qd J_{FF} 12.1, 4.8 Hz -CF=CF(CF₃)).

(Z)-HFC-1225-ye has been shown to be a convenient starting material for the generation of main group perfluoropropenyl systems. $Bu_3Sn(CF=CF(CF_3))$ can be used as a source of the perfluoropropenyl group and will transfer Z-(CF=CF(CF_3)) via a cross-coupling reaction into a variety of activated and deactived aromatic systems including *p*-MeOC₆H₄I and *p*-NO₂C₆H₄I

<u>The University of Manchester</u> School of Chemistry Faculty of Engineering and Physical Sciences

Contact Details :

Dr. A. K. Brisdon - alan.brisdon@manchester.ac.uk

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL

D.J. Burton, V. Jairaj, J. Fluorine Chem. 126 (2005) 797–801
V. Farina, S. Kapadia, B. Krishnan, C. Wang, L.S. Liebeskind, J. Org. Chem. 59 (1994) 5905-5911
W. Dmowski, J. Fluorine Chem. 18 (1981) 25-30